From Fully Differential Electron to Ion Impact Studies of Ionization: the Legacy of Don Madison

S. Bastola M. Dhital B. Lamichhane S. Majumdar D. H. Madison M. S.

Missouri S&T

A. Hasan *UAE University*

R. Lomsadze *Tbilisi State University* Most important goal of atomic collision research: study <u>quantum-</u> <u>mechanical few-body problem</u>, one of the most fundamentally important and yet unsolved problems in physics

Essence of FBP: Schrödinger equation not analytically solvable for more than two mutually interacting particles even if forces are precisely known. Particularly challenging: dynamic few-body systems like e.g. fragmentation processes.

> Atomic fragmentation particularly suitable because: - underlying interaction (electromagnetic) understood

- can select systems with small particle number (≈ 3 – 5)
Kinematically complete experiments

Where Don had to work on me (really hard and persistently): how to present results of a kinematically complete experiment on ionization

Typical <u>e,2e experiment:</u> energy and angles of both final-state electrons measured in coincidence ⇒ FDCS usually presented as angular distribution of ejected electrons with all other parameters fixed. Typical <u>ion-impact experiment:</u> Earlier, either projectile scattering angle or electron spectra measured, but not in coincidence. With advent of COLTRIMS, electrons or projectiles measured in coincidence with recoil ions. \Rightarrow Usually, momentum distribution of various particles presented.

Advantage of fully differential electron angular distribution: more transparent Often, structures in FDCS directly reflect interactions underlying reaction dynamics

Collision geometry and coordinate system

Blue: Scattering plane defined by p_o and p_f **Red: electron emission plane defined by p₀ and p_e**

Quantities fixed: $\phi_p = 0$, θ_p , $\phi_e = 0$, and \mathbf{E}_e , spectra plotted as a fct. of θ_e

Experimental Setup, 75 keV p + He

Complete projectile and recoil-ion momenta measured. Electron momentum from conservation laws \Rightarrow kinematically complete \Rightarrow FDCS

Ionization of simple atoms or molecules by ion impact Perturbative treatment: <u>Born series</u>

$$\begin{split} T = & <\!\!e^{ik_{f}r} \phi_{f} \left| V \right| e^{ik_{i}r} \phi_{i} \!\!> \! + <\!\!e^{ik_{f}r} \phi_{f} \left| VG_{0}V \right| e^{ik_{i}r} \phi_{i} \!\!> \! + \\ & <\!\!e^{ik_{f}r} \phi_{f} \left| VG_{0}VG_{0}V \right| e^{ik_{i}r} \phi_{i} \!\!> \! + \dots \end{split}$$

Distorted wave methods

Higher-order contributions treated in wavefunction of system Break up three-body system into 3 two-body systems:

Continuum eigenstate of each two-body subsystem is a Coulomb-wave. Approximation: Represent total wavefunction as product of three Coulomb terms $\Psi_f = C_{Pe}C_{PT}C_{Te}$

3C wavefunction ignores correlations between particle pairs ⇒ only accurate if one particle far from other two

In perturbation theory **understanding few-body dynamics** means describing relative importance of higher vs first-order contributions

One important higher-order process: post-collision interaction (PCI)

PCI maximizes for $v_{el} = v_p$, for long time no kinematically complete data available!

Electrons ejected into scattering plane $\theta_p = 0.55$ mrad

M. Dhital et al. PRA <u>99</u>, 062710 (2019)

75 keV p + H₂

Scattering plane Electron energy = 30 eV \Rightarrow Discrepancies between experiment and between two conceptually very similar theoretical models, which appear to maximize near velocity matching and at large θ_p

⇒ In these regions FDCS particulalrly sensitive to details of few-body dynamics!

Possible causes for discrepancies:

- a) **3C wavefunction inaccurate** if all particles close together. **PE – PT – PE** sequence selects such events.
- b) Capture channel not included in theory ⇒ due to unitarity capture is erroneously counted as ionization in transition amplitude

Both problems addressed by non-perturbative approaches such as WP-CCC. Calculations currently in progress ⇒ Alisher Kadyrov p + He

$$\epsilon = 65.5 \text{ eV} (v_{el}/v_p = 1), \theta_p = 0.5 \text{ mrad}$$

2 signatures of PCI:

- a) forward peak
- b) forward shift of binary peak

Next project: go as far away as possible from $v_{el}/v_p = 1$ in order to <u>suppress PCI</u>.

Should enable us to study non-PCI higher-order effects.

Use signatures of PCI as monitor for residual PCI contributions

$$\varepsilon = 25.6 \text{ eV}$$

One PCI signature, forward peak, completely absent

Arrows indicate direction of momentum transfer

Compared to $v_{el}/v_p = 1$, forward peak strongly suppressed, but compared to $v_{el}/v_p << 1$ a significant residue remains

K.H. Spicer et al., PRA <u>104</u>, 052815 (2021)

 $\varepsilon = 100 \text{ eV}$

Forward shift is

larger at

BUT ...

 $\epsilon = 25.6 \text{ eV},$

... Schulz et al. PRA <u>88</u>, 022704 (2013): projectile – target nucleus interaction can also lead to forward shift

<u>2 components</u> to forward shift, one contributes only at $v_{el}/v_p < 1$, the other only near and above $v_{el}/v_p = 1$.

Forward shift for $\varepsilon = 100$ eV caused mostly by PCI, but for $\varepsilon = 25.6$ eV mostly due to non-PCI effects?

Conclusions

- FDCS for ionization measured for a broad range of electron energies
- Near velocity matching PCI signatures: a) forward peak b) forward shift of binary peak
- Forward peak absent far below, but residue remains far above matching velocity
- Not every forward shift of binary peak is signature of PCI
 - far below matching velocity non PCI higher-order effects
 - above matching velocity mostly due to PCI
- Without **Don Madison** and his distorted wave calculations we would not be where we are. But now <u>non-perturbative</u> calculations needed.